307 research outputs found

    Monte Carlo algorithm for the evaluation of the distance estimation variance in RSS-based visible light positioning

    Get PDF
    In this work, the Monte Carlo algorithm to determine the variance on the distance estimation in Received Signal Strength-based visible light positioning is considered. The method is build on the maximization of the signal-to-noise-ratio by means of matched filtering, and leads to a number of characteristics that are typically only obtained after intensive analytical elaborations. It is shown that the results match those obtained by calculating the Cramer-Rao lower bound when only the noise is considered as non-deterministic. It is demonstrated that the method is also applicable when multiple physical parameters exhibit a probability distribution, leading to an assessment of the distance estimation accuracy in more realistic settings

    Advanced real-time indoor tracking based on the Viterbi algorithm and semantic data

    Get PDF
    A real-time indoor tracking system based on the Viterbi algorithm is developed. This Viterbi principle is used in combination with semantic data to improve the accuracy, that is, the environment of the object that is being tracked and a motion model. The starting point is a fingerprinting technique for which an advanced network planner is used to automatically construct the radio map, avoiding a time consuming measurement campaign. The developed algorithm was verified with simulations and with experiments in a building-wide testbed for sensor experiments, where a median accuracy below 2 m was obtained. Compared to a reference algorithm without Viterbi or semantic data, the results indicated a significant improvement: the mean accuracy and standard deviation improved by, respectively, 26.1% and 65.3%. Thereafter a sensitivity analysis was conducted to estimate the influence of node density, grid size, memory usage, and semantic data on the performance

    Advanced indoor localisation based on the Viterbi algorithm and semantic data

    Get PDF
    In this work a real-time indoor localisation system based on the Viterbi algorithm is developed. This Viterbi principle is used in combination with semantic data to improve the accuracy: i.e., the environment of the object that is being tracked and an adjustable maximum speed. The developed algorithm was verified by simulations and with experiments in a building-wide testbed for sensor and WiFi experiments. Compared to a reference algorithm without Viterbi or semantic data, the results indicated a significant improvement: the mean accuracy and standard deviation improved by respectively 26.4% and 63.9%

    Hybrid multi-objective network planning optimization algorithm

    Get PDF

    An algorithm for optimal network planning and frequency channel assignment in indoor WLANs

    Get PDF
    The increased use of wireless local area networks has led to an increased interference and a reduced performance, as a high amount of access points are often operating on the same frequency channel. This paper presents a network planning algorithm that minimizes the number of access points required for a certain throughput and optimizes the frequency allocated to each AP, leading to reduced interference. The network planning algorithm is based on a heuristic and the frequency planning algorithm on a combination of a greedy algorithm and a Vertex-Coloring-Based Approach. The algorithm provides a good performance and has a limited computation time

    Real-time path loss modelling for a more robust wireless performance

    Get PDF
    The use of wireless communication systems is important for next-generation industrial environments. To be able to set up a robust network that reacts to changes in the environment, a system for real-time updating path loss models is introduced, based on a continuous measurement of the signal strength in the network. The system is a necessary building block for the creation of a fully automated wireless network planner

    A heuristic tool for exposure reduction in indoor wireless networks

    Get PDF
    A heuristic indoor network planner for exposure calculation and optimization in wireless networks is developed. The model for the electric-field strength in the vicinity of an access point is presented and the WiFi networks are optimized in order not to exceed a maximal electric-field strength at a certain separation from the access points. The influence of the maximally allowed field strength and the assumed minimal separation between the access point and the human is assessed for a typical office building
    corecore